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The Region 2 University Transportation Research Center (UTRC) is one of ten original University 
Transportation Centers established in 1987 by the U.S. Congress. These Centers were established 
with the recognition that transportation plays a key role in the nation's economy and the quality 
of life of its citizens. University faculty members provide a critical link in resolving our national 
and regional transportation problems while training the professionals who address our transpor-
tation systems and their customers on a daily basis.

The UTRC was established in order to support research, education and the transfer of technology 
in the �ield of transportation. The theme of the Center is "Planning and Managing Regional 
Transportation Systems in a Changing World." Presently, under the direction of Dr. Camille Kamga, 
the UTRC represents USDOT Region II, including New York, New Jersey, Puerto Rico and the U.S. 
Virgin Islands. Functioning as a consortium of twelve major Universities throughout the region, 
UTRC is located at the CUNY Institute for Transportation Systems at The City College of New York, 
the lead institution of the consortium. The Center, through its consortium, an Agency-Industry 
Council and its Director and Staff, supports research, education, and technology transfer under its 
theme. UTRC’s three main goals are:

Research

The research program objectives are (1) to develop a theme based transportation research 
program that is responsive to the needs of regional transportation organizations and stakehold-
ers, and (2) to conduct that program in cooperation with the partners. The program includes both 
studies that are identi�ied with research partners of projects targeted to the theme, and targeted, 
short-term projects. The program develops competitive proposals, which are evaluated to insure 
the mostresponsive UTRC team conducts the work. The research program is responsive to the 
UTRC theme: “Planning and Managing Regional Transportation Systems in a Changing World.” The 
complex transportation system of transit and infrastructure, and the rapidly changing environ-
ment impacts the nation’s largest city and metropolitan area. The New York/New Jersey 
Metropolitan has over 19 million people, 600,000 businesses and 9 million workers. The Region’s 
intermodal and multimodal systems must serve all customers and stakeholders within the region 
and globally.Under the current grant, the new research projects and the ongoing research projects 
concentrate the program efforts on the categories of Transportation Systems Performance and 
Information Infrastructure to provide needed services to the New Jersey Department of Transpor-
tation, New York City Department of Transportation, New York Metropolitan Transportation 
Council , New York State Department of Transportation, and the New York State Energy and 
Research Development Authorityand others, all while enhancing the center’s theme.

Education and Workforce Development 

The modern professional must combine the technical skills of engineering and planning with 
knowledge of economics, environmental science, management, �inance, and law as well as 
negotiation skills, psychology and sociology. And, she/he must be computer literate, wired to the 
web, and knowledgeable about advances in information technology. UTRC’s education and 
training efforts provide a multidisciplinary program of course work and experiential learning to 
train students and provide advanced training or retraining of practitioners to plan and manage 
regional transportation systems. UTRC must meet the need to educate the undergraduate and 
graduate student with a foundation of transportation fundamentals that allows for solving 
complex problems in a world much more dynamic than even a decade ago. Simultaneously, the 
demand for continuing education is growing – either because of professional license requirements 
or because the workplace demands it – and provides the opportunity to combine State of Practice 
education with tailored ways of delivering content.

Technology Transfer

UTRC’s Technology Transfer Program goes beyond what might be considered “traditional” 
technology transfer activities. Its main objectives are (1) to increase the awareness and level of 
information concerning transportation issues facing Region 2; (2) to improve the knowledge base 
and approach to problem solving of the region’s transportation workforce, from those operating 
the systems to those at the most senior level of managing the system; and by doing so, to improve 
the overall professional capability of the transportation workforce; (3) to stimulate discussion and 
debate concerning the integration of new technologies into our culture, our work and our 
transportation systems; (4) to provide the more traditional but extremely important job of 
disseminating research and project reports, studies, analysis and use of tools to the education, 
research and practicing community both nationally and internationally; and (5) to provide 
unbiased information and testimony to decision-makers concerning regional transportation 
issues consistent with the UTRC theme.
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Disclaimer  
The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. The contents do not 
necessarily reflect the official views or policies of the UTRC, New York Institute of 
Technology, or the Federal Highway Administration. This report does not constitute a 
standard, specification, or regulation. This document is disseminated under the 
sponsorship of the Department of Transportation, University Transportation Centers 
Program, in the interest of information exchange. The U.S. Government and New York 
Institute of Technology assume no liability for the contents or use thereof. 



TECHNICAL REPORT STANDARD TITLE PAGE 

1. Report No. 2.Government Accession No. 3. Recipient’s Catalog No.

4.  Title and Subtitle 5.  Report Date

Secure and Private Sensing for Driver Authentication and Transportation Safety August 25th. 2017 

6. Performing Organization Code

7.  Author(s) 8. Performing Organization Report No.
Jonathan Voris 
N. Sertac Artan 
Wenjia Li 

9.  Performing Organization Name and Address 10. Work Unit No.
New York Institute of Technology 
1855 Broadway 
New York, NY 10023 11.  Contract or Grant No.

49198-33-27 

12.  Sponsoring Agency Name and Address 13.  Type of Report and Period Covered
Final Report 
June 1st 2015 - June 30th, 2017 

14.  Sponsoring Agency Code

15.  Supplementary Notes

16.  Abstract
Recent technology trends have allowed affordable and efficient collection of driver data.  This has enabled a variety of potential applications, including more accurate 
pricing determinations for insurance and finer grained traffic planning for improved public safety. Although this technological growth provides for a wealth of new 
opportunities, given the safety implications of driving, there are many security and privacy issues that must be considered for their deployment. For instance, some 
applications require access to a vehicle's engine via a debug interface, known as On-Board Diagnostics (OBD-II), which may provide a vector for attack. Other systems 
may involve GPS tracking, which can potentially violate a driver's privacy. Our research seeks to find solutions to these shortcomings by using local sensing and 
monitoring to support the development of new driver devices and applications, such as driver authentication, while preserving vehicular security and privacy. 

We propose a novel approach to data collection for commercial driving applications and vehicle safety that puts users in control of how their information is used. By 
collecting local driving data in a manner that is decoupled from critical car components and Internet connections, our system can support transportation applications, such 
as driver authentication, without sacrificing vehicle security or driver privacy. The legitimate driver of a vehicle traditionally gains authorization to access their vehicle via 
tokens such as ignition keys, some modern versions of which feature RFID tags. However, this token-based approach is not capable of detecting all instances 
of vehicle misuse. Technology trends have allowed for affordable and efficient collection of various sensor data in real time from the vehicle, its surroundings, and devices 
carried by the driver, such as smartphones.  

This report describes the result of our research effort investigating the use of this sensory data to actively identify and authenticate the driver of a vehicle by determining 
characteristics which uniquely categorize individuals’ driving behavior. Our approach is capable of continuously authenticating a driver throughout a driving session, as 
opposed to alternative approaches which are either performed offline or as a session starts. This means our modeling approach can be used to detect mid-session driving 
attacks, such as carjacking, which are beyond the scope of alternative driver authentication solutions. A simulated driving environment was used to collect sensory data of 
driver habits including steering wheel position and pedal pressure. These features are classified using a Support Vector Machine (SVM) learning algorithm. Our results 
show that our approach is capable of using various aspects of how a vehicle is operated to successfully identify a driver under 2.5 minutes with a 95% confidence interval 
and with at most one false positive per driving day. 

17. Key Words 18. Distribution Statement

Vehicular security, intelligent transportation systems, smart cities, machine 
learning, driver authentication 

19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price

Unclassified Unclassified 43 

Form DOT F 1700.7 (8-69) 

University Transportation Research Center
The City College of New York
137th Street and Convent Ave,
New York, NY 10031



UTRC Project Final Report 3 

Executive Summary 
The legitimate driver of a vehicle traditionally gains authorization to access their vehicle 
via tokens such as ignition keys, some modern versions of which feature RFID tags. 
However, this token-based approach is not capable of detecting all instances of vehicle 
misuse. Technology trends have allowed for affordable and efficient collection of various 
sensor data in real time from the vehicle, its surroundings, and devices carried by the 
driver, such as smartphones. The goal of this project was to study the use of sensory 
data to actively identify and authenticate the driver of a vehicle by determining 
characteristics which uniquely categorize individuals’ driving behavior. Our approach is 
capable of continuously authenticating a driver throughout a driving session, as 
opposed to alternative approaches which are either performed offline or as a session 
starts. This means our modeling approach can be used to detect mid-session driving 
attacks, such as carjacking, which are beyond the scope of alternative driver 
authentication solutions. A simulated driving environment was used to collect sensory 
data of driver habits including steering wheel position and pedal pressure. These 
features are classified using a Support Vector Machine (SVM) learning algorithm. Our 
pilot study with 10 human subjects shows that we can use various aspects of how a 
vehicle is operated to successfully identify a driver in less than 2.5 minutes with a 95% 
confidence interval and with at most one false positive per driving day. 

Background 
Data on driving habits is being used in a wide variety of applications and impacts 
stakeholders with a broad range of interests; such as transportation departments in the 
governments, private entities, individual drivers, and the public in general. 
Transportation departments can utilize this information to anticipate future driver needs 
and problematic road safety areas and for optimizing infrastructure investments which 
render the most long-term benefits. Private entities, such as insurance companies and 
car-share programs, can use this information to better understand driver behavior and 
set product prices accordingly; drivers can use the data to improve their driving habits, 
to reach their destinations faster and tap into new safety features such as collision 
avoidance systems. The general public will use this information to get safer roads, and 
lower taxes ensuring from better planning. 

Figure 1: Sensors and Communication Interfaces 
Available on a Modern Vehicle 
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Traditionally, measuring driver habits involved conducting costly traffic surveys which 
took time and human effort and yielded results with limited accuracy. Recently, 
however, several technological trends have converged to allow affordable and efficient 
collection of driver data. The cost and availability of wireless communication and 
sensing hardware has allowed for easy collection of data, often in real time via 
ubiquitous devices installed in vehicles. This has enabled a variety of potential 
applications, including more accurate pricing determinations for insurance (Pay as you 
drive (PAYD) or Usage-Based Insurance (UBI)) and finer grained traffic planning for 
improved public safety. 

Although this technological growth provides for a wealth of new opportunities, given the 
safety implications of driving, there are many security and privacy issues that must be 
considered for their deployment. Devices that utilize the same networks as vehicle 
control components may increase the attack surface of the car’s system, making it more 
vulnerable to cyber-attacks. Other devices involve the collection of sensitive information 
which users would prefer to keep private, such as GPS coordinates or photographs of 
the drivers. The goal of our research is to design local sensor systems which protect 
driver privacy and vehicle security while supporting existing data collection applications. 
The data we will collect could potentially benefit broader vehicular networks if shared in 
a privacy-preserving fashion. Furthermore, in some cases our proposed technology may 
be able to provide additional details about the state of a vehicle, such as whether a 
driver’s behavior resembles their past habits or violates safety regulations. This 
potentially enables several new services, such as driver authentication for fraud 
detection and enhanced public safety monitoring. 

Objectives 
This project can be broken down into three core goals. Firstly, we desired to identify 
distinctive underlying characteristics of individual’s driving habits which could potentially 
be used to construct a model of driving behavior, which could in turn be used to classify 
drivers, allowing vehicles to confirm the identity of their current driver by comparing 
current usage to patterns of past behavior. Secondly, we sought to identify driving 
simulation software appropriate to the task of collecting these features as part of a 
human subject study of driving behavior. Once selected, this simulation software would 
be used to design scenarios for users to navigate which would realistically simulate real 
world driving situations. Next, this project aimed to use this simulation to collect data 
from a pool of volunteers. Finally, the data collected from this study would be analyzed 
in order to draw conclusions regarding the viability of behavior based driver 
authentication. 

Introduction 
Ignition keys have served as authentication tokens for vehicle drivers for decades. More 
recently, traditional keys based on physical shape have been augmented with 
embedded Radio Frequency Identification (RFID) tokens to provide an additional layer 
of protection against theft. Unfortunately, such keys are susceptible to theft, cloning, 
forgery, and relay attacks. However, RFID enabled steering columns represent only a 
small portion of the sensing hardware available on modern vehicles.  
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Traditionally, measuring driver habits involved conducting costly traffic surveys which 
take a large amount of time and human effort yet yielded results with limited accuracy 
[1]–[3]. Recently, however, several technological trends have converged to allow 
affordable and efficient collection of driver data [4], [5]. The cost and availability of 
wireless communication and sensing hardware has allowed for easy collection of data, 
often in real time via ubiquitous devices installed in vehicles or worn by drivers. This has 
enabled a variety of potential applications, including more accurate pricing 
determinations for insurance (Pay as you drive (PAYD) or Usage-Based Insurance 
(UBI)) [6], [7] and finer grained traffic planning for improved public safety [8].  

This project seeks to solve the problem of unsafe and untrustworthy transportation 
systems caused by vehicle misuse by authenticating drivers according to the manner in 
which a vehicle is operated. To this end, we conducted a study with 10 human subjects 
to assess the efficacy of using the data collected from the vehicle sensors on identifying 
the driver.  

We propose to authenticate drivers based on a variety of data that is available via 
common onboard vehicular sensors and systems. There are a variety of stakeholders 
involved in the operation of transportation systems for which a more thorough guarantee 
of a driver’s identity would be of interest. For example, municipal governments may wish 
to ensure that buses are being operated by a predetermined employee. Similarly, car 
sharing service providers may want to confirm that a member has picked up the correct 
vehicle, and owners of taxi fleets may wish to ensure their vehicles have not been 
operated without permission. Insurance providers may wish to verify that only drivers 
listed on a particular policy are allowed access to a covered car. Finally, recognition that 
a vehicle is being operated by someone other than the vehicle’s typical owner may 
allow for advanced notice in the event of vehicle theft. 

Summary of the Literature Review 
In a recent issue of IEEE Transactions on Intelligent Transportation Systems, Woo, Jo 
and, Lee performed an experiment which demonstrated the possibility of attacking a 
vehicle’s CAN bus through an attached diagnostic device [9]. This work focuses on 
appliances which are connected with a vehicle’s CAN bus via an OBD-II connection and 
transmit data to a cell phone application. The authors show that a malicious diagnostic 
application can be used to intercept and inject their own CAN bus data, effectively 
gaining remote control over a vehicle’s ECUs. This is demonstrated by performing a 
variety of actions which affect the vehicle including accelerating and turning off the 
engine. The authors propose a protocol which addresses these vulnerabilities by 
encrypting and authenticating CAN bus data. 

Foster et. al investigated the security of an OBD-II device for collecting vehicle usage 
information for insurance pricing [10]. This group discovered a variety of security issues 
in the device they analyzed, including credential reuse among devices, the ability to 
output the device’s RAM state over a local USB connection, and the ability to update the 
device’s configuration via SMS. 
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The authors concluded that this leaves any vehicle which the device was connected to 
vulnerable to both local and remote attacks [10]. They concurred with the assessment 
provided by Woo, Jo, and Lee that a successful attack on the OBD-II device would 
leave the entire compromised vehicle’s systems open to malicious control. Foster et. al 
suggest several solutions to assuage these issues, including stronger authentication 
and key management. 

 
In addition, He et al. recently studied a conditional privacy-preserving authentication 
(CPPA) scheme for vehicular ad hoc networks (VANETs), which is able to address both 
security and privacy-preserving challenges in VANETs, because the CPPA scheme can 
support both mutual authentication and privacy protection simultaneously [11]. In recent 
years, many identity-based CPPA schemes for VANETs have been proposed, in which 
bilinear pairing technology is used to enhance security or to improve performance. 
However, it is widely accepted that the bilinear pairing operation generally introduces a 
large amount of additional computational overhead, which makes it infeasible to be 
deployed to VANETs because of the constrained resources. Thus, the authors in [11] 
proposed a CPPA scheme for VANETs that does not use bilinear paring technology and 
the authors also showed in this paper that the proposed scheme supports both the 
mutual authentication and the privacy protection at the same time. The proposed CPPA 
scheme can produce a better performance in terms of computational cost and 
communication cost when compared to existing CPPA schemes. 

 
Alternatively, Bittl et al. studied a GPS time spoofing attack that aims to cause denial of 
service (DoS) in VANETs [12]. In recent years, Car2X (such as Vehicle-to Vehicle 
(V2V), Vehicle-to-Infrastructure (V2I), etc.) communication has become a key enabling 
technology for vehicular networks. However, most of the existing Car2X communication 
protocols significantly rely on the global positioning system (GPS) for providing location 
information and time synchronization, which is vulnerable to both location and time 
spoofing attacks. In this work, the authors primarily focus on time spoofing attack for 
VANETs, and they show that this type of attack can lead to severe denial of service 
attacks. In addition, the non-repudiation feature of the security system can also be 
violated by offering the possibility to misuse authentication features. The authors also 
discussed a potential Sybil attack which can severely influence the reliability of the basic 
time and location data sets inside VANET messages. To cope with the time spoofing 
attack, the authors also depicted some mechanisms, which performance has been 
studied as well. 
 
Summary of the Work Performed 
This report summarizes the research efforts performed as part of our UTRC supported 
project entitled “Secure and Private Sensing for Driver Authentication and 
Transportation Safety” which has recently been brought to a successful conclusion. The 
main goal of this project was to assess a driver’s behavior while driving with an aim of 
identifying driver identity and other characteristics, such as drowsiness, to support 
transportation safety and security.  
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Our approach to this problem consisted of minimizing the set of sensors required to 
make assessments of driving behavior for two core reasons. Firstly, we sought to make 
the driving data collection as privacy-conscious as possible by collecting data which 
would not be problematic from a privacy perspective if released. Secondly, a goal of our 
project was to decouple sensing from the vehicle itself to avoid any potential 
connection, and thus attack vector, to critical vehicular systems. We accomplished this 
goal by performing two distinct but related studies of user behavior with a simulated 
driving task. Our results indicate that driver identification is possible with a minimally 
invasive set of monitoring sensors. 
 
An outline which briefly summarizes each of the research tasks we completed during 
the course of this project is included below: 

 Obtaining IRB approval for the first phase of our human subject study with a 
simulated driving environment 

 Investigating potential biometric modalities for driver identification 
 Identifying potential simulator software to utilize in our human subject study 
 Surveying sensor hardware for components which would potentially be used to 

monitor various driving modalities, such as pressure sensors 
 Assessing potential driving simulation software 
 Initial development of a preliminary driving scenario 
 Performing a small scale human user study in which 12 participants performed 

our preliminary driving task 
 Cleaning, analyzing, and modeling our preliminary dataset, the results of which 

were presented as a paper at the Workshop on Green ICT and Smart Networking 
(GISN 2016), co-located with the International Conference on Network and 
Service Management (CNSM 2016) 

 Developing as detailed a driving task and environment as possible with the 
capabilities of our simulation software 

 Augmenting our study simulation hardware and software to allow for the 
collection of additional features 

 Completing a large scale human subject study of driving habits with more 
features, a post-conditional survey, and emotional preconditioning 

 Performing a thorough review of academic literature on transportation security 
The remainder of this section of the report will provide details on each of these 
accomplishments. 
 
Institutional Review Board Approval: 
One of our earliest project tasks was the pursuit of Institutional Review Board (IRB) 
approval for our human subject studies. Our protocol was approved on 9/22/15. Our IRB 
protocol materials and approval letter were submitted as supplemental materials.  
 
 
Survey of Smart Transportation Security 
As noted in the introduction, our research team also completed a thorough survey of the 
security of current transportation technology as well as the state-of-the-art in proposed 
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future transit systems. Our research found a troubling lack of security in today’s typical 
vehicles. The development of in-vehicle networks in many ways mirrors that of the early 
Internet, which was initially conceived as a network of friendly collaborators. Without 
having to worry about the presence of malicious actors or vulnerable assets, early 
network designers were free to focus on performance and efficiency. Since everything 
was intended for sharing, there was no need for attribution or access control. 

 
As the Internet scaled and commercialized, a patchwork of network security solutions 
eventually emerged, yet the lack of foresight lingers in the vulnerabilities of today’s 
computer networks. Similarly, in-vehicle networks were designed under the assumption 
of a completely closed system comprised of trustworthy components with no external 
connections. Modern cars are controlled by dozens of Electronic Control Units (ECUs) 
which communicate via the Controller Area Network (CAN) standard. Before the 
widespread availability of wireless networks and mobile devices for personal use, 
gaining access to a vehicle’s network was considered impractical due to their physical 
security. Cars are either moving at high speed or are physically secured against theft. 

 
As a result, intra-vehicular networks are designed with even fewer security 
considerations than the early Internet. Much like the Internet, there is no built-in access 
control mechanism in the CAN standard. The Internet Protocol requires source and 
destination addresses at a minimum, however, which provides a crude form of 
attribution. CAN systems, on the other hand, are strictly broadcast, making attribution all 
but impossible once access to the network has been gained. Vehicles have long been 
viewed as valuable assets for their material worth, but until recently little attention was 
paid to enhancing the security of vehicles at an information level. Most early forms of 
protection focused on preventing physical theft or tampering, including electronic theft 
protection systems and mileage counter protection measures. This attitude has 
gradually shifted as more and more computerized components have been added to 
cars. 

 
The first microcontroller was added to a vehicle in 1977 when General Motors utilized 
one for spark plug timing in its Oldsmobile Toronado models. Since then, the expansion 
of processors into other aspects of vehicular systems has transpired at a precipitous 
pace, culminating in today’s incredibly complex intra-vehicular systems. Modern cars of 
all price levels currently require tens of millions of code and dozens of microcontrollers 
to function. This means that it is critical to provide information security as well as 
physical security to today’s automobiles. Just as with traditional computer systems, 
attacks against vehicle data networks can be classified as local or remote. Local attacks 
are those that require physical access to a vehicle’s network. Due to the emphasis 
placed on the physical security of vehicles and the fact that they are often in rapid 
motion, launching a direct physical attack is typically considered to be outside of the 
scope of vehicle threat models. However, most realistic models allow for the possibility 
of indirect physical access, often assumed to be made through a third party. Such 
potential avenues of access include devices which connect to a vehicle via its On-Board 
Diagnostics (OBD-II) port, CD player, or media center USB input, or even an audio jack. 
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Although originally intended for trusted access by first party devices given to specialized 
technicians and mechanics, the market for OBD-II tools has opened to include many 
third party devices. This means that the attack surface of the average vehicle must also 
be extended to include many third party devices, making the coordination of security 
audits for all potential hardware and software involved highly impractical. Furthermore, 
any vehicle or device with a network connection introduces the potential for remote 
system exploitation. According to a 2015 congressional report [13], nearly all vehicles 
currently on the road feature a wireless connection which could serve as a potential 
avenue of attack. 

 
Remote attacks against vehicular systems can be further divided into the range of 
access provided; clearly, the further away an attack can be carried out from, the 
stronger the adversary. Short range access media include Bluetooth phone and music 
systems, remote start and entry systems, RFID access tokens, and 802.11 network 
connections. Longer range connections are typically established using cellular network 
connections. Note that some attacks may be hybrid forms which cross these 
classification boundaries. For instance, an attack launched remotely across a 4G 
cellular network against a device connected to a vehicle’s OBD-II port would involve 
both indirect physical access and a long range wireless connection.  

 
Unfortunately, manufacturers of vehicles and OBD-II devices are not always 
forthcoming regarding the wireless connections which a vehicle may be equipped with. 
It therefore may be possible for data transmissions to occur without the vehicle owner’s 
permission or knowledge. Even if they are aware of such transmissions, it may be 
impossible to disable them without also turning off desirable functionality. 
 
It is difficult to gauge the number of incidents in which attacks have occurred against 
vehicular networks in the wild due to a dearth of data in part because of manufacturers’ 
reluctance to share such information. However, such attacks are no longer theoretical in 
nature, having been demonstrated against actual vehicles being driven on public 
roadways. In 2013, Miller and Valasek demonstrated that attacks could be launched 
against various ECUs over a car’s CAN bus with direct physical access via an OBD-II 
interface [14]. This included control over the speedometer, odometer, onboard 
navigation, steering, braking, and acceleration The authors were also able to modify the 
firmware of some ECUs, raising the possibility of advanced persistent threats which 
reside on an intra-vehicular network for a prolonged period of time.  

 
Threats which apply to firmware in general also apply to vehicular systems [15], with a 
heightened risk due to safety issues associated with transportation systems. Initially, the 
automotive industry downplayed the impact of security research by emphasizing the 
implausibility of the direct physical access which was required. In 2015, Miller and 
Valasek challenged these claims when they extended their attacks by carrying them out 
remotely [16]. In the specific instance tested, access was gained over a long range 
cellular network to a vehicle’s entertainment system, granting them the same control 
over critical car systems. The results of this research were widespread, including a 
recall of over a million vehicles, lawsuits against cellular carriers, and the 
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aforementioned congressional report on the current state of insecurity in vehicular 
systems. 

 
This only represents the beginning of wireless deployments in transportation systems, 
however. Future deployments will cause the handful of wireless channels on today’s 
vehicles to seem quaint by comparison. Researchers are currently envisioning future 
transportation systems in which all vehicles and infrastructure are connected via 
pervasive wireless links; such environments are typically referred to as “V2X” systems. 
This proliferation of wireless links implies a many-fold increase in the attack surface of a 
typical vehicle, as every new connection could potentially be utilized as an attack vector. 
Furthermore, many aspects of V2X systems differ from typical computer networks in 
ways which add unique challenges. For instance, in order for roadside units and other 
forms of infrastructure to communicate useful information they must be equipped with 
micro-controllers, sensors, and wireless chips. To see widespread deployment, these 
components will have to be as small and resource-efficient as possible. From this 
perspective, V2X systems are subject to many of the same constraints which “Internet-
of-Things” (IoT) security solutions are subject to, including small amounts of memory 
and processing power, limited form-factors, low-power radio standards, and limited 
energy availability. 

 
Another unique requirement of V2X is their extreme flexibility with respect to speed and 
movement. Transportation systems are by nature dynamic and mobile, while traditional 
network protocols are not designed with mobility in mind; indeed, an initial design 
assumption of the early Internet was that nodes would not move. The speed at which 
modern transportation systems are expected to move may complicate handoffs 
between different network cells and limit opportunities for executing protocols such as 
key exchange and session establishment. This, combined with the aforementioned IoT 
device constraints, necessitates very low overhead protocols for V2X, which is a barrier 
to utilizing the kinds of cryptographic solutions to security found on traditional computer 
systems. 

 
The benefits of a smart transportation system can only be realized if the data collected 
and shared by participants is authentic. Establishing trust in a TCPS is therefore 
paramount. For existing vehicular networks this requires the difficult task of designing 
secure solutions while retaining compatibility with existing deployments. Fortunately, 
since V2X systems are currently emerging as more and more connections are 
established between vehicles and roadside assets, there is more room to “bake-in” 
security into these systems by applying the lessons learned in other domains. Trust is 
an issue for both in-vehicle and V2X communication with any potential TCPS cloud 
services. However, without being able to judge the veracity of messages originating 
from within a vehicle or other transportation asset, it is very difficult to establish trust in 
the data the node relays to other parties. Most V2X trust solutions thus begin with 
mechanisms for enforcing trust by adding cryptographic authentication components to 
in-vehicle networks. An alternative approach is to modify the CAN standard by adding 
new fields which can be used as indicators of intrusion.  
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Design of Driving Features: 
We have initiated our investigation into potentially viable behavioral characteristics 
which could be used to profile driving behavior, and what sensors could potentially be 
used to capture them in a real world driving situation; this is one of our M2 tasks. As we 
continued to refine our set of potentially discriminative driving characteristics, we 
focused on traits which can be monitored in a way that is non-invasive both for the 
vehicle’s computer system as well as the driver. A list of modalities and, where 
applicable, supporting references, is included in Table 1. 
 
Hardware Assessment for In-Vehicle Data Collection: 
Our research team assessed sensing hardware components which could potentially be 
used to observe the behavioral modalities identified as part of M2; this information is 
included in Table 1. 
 
Figure 2 depicts pressure sensors which were considered based on their suitability as 
steering wheel hand position monitors. Figure 3 shows the PIs testing one of the 
pressure sensors; the pressure activity can be observed on the oscilloscope in the 
background of the figure. Figure 4 shows the same pressure sensor deployed in 
position on the Logitech G27 racing wheel. 
 
 

 
Figure 2: Various Sensors under Consideration for Measuring the Amount of 

Pressure Drivers Induce on Various Contact Points (e.g. on the Steering Wheel). 
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Modality Description Sensor References 

Blinker For how long was the blinker on A pair of gyroscopes for relative 
angle of the blinker or a stretch 
sensor 

[17] 
[18] 

Seat Belt When does the driver put the seat 
belt on? How much pressure is 
exerted on the restraint? 

Proximity Sensing with Reed Switch 
Sensor 

[19] 

Hand Position Angle between the driver's hands Switch array embedded into the 
wheel 

N/A 

Braking Hard or Soft braking; emergency 
break usage 

Force sensors  placed on the pedals [20] 

Seating Position Pressure points  between the driver 
body and the seat 

Tactilus® Automotive Occupant 
Pressure Measurement System 

[21] 

Speed Mostly driver will have some specific 
destination and almost the same 
speed everyday 

Accelerometer & GPS [22] 

Lane Position To the extreme left, extreme right or 
middle. To see where the white line 
is. 

Camera [23] 

Distance From 
the car 

To see how much distance is there 
between our car and the car in front. 

Proximity Sensors [22] 

Turns How sharp the turns are Inertial Sensors [22] 

EEG Driver’s brainwave activity while 
controlling the vehicle. 

EEG Monitoring System [24] 

ECG Driver’s heartbeat patterns while 
controlling the vehicle. 

ECG Monitoring System [25] 

Video-
oculography 

Driver’s eye movement activity while 
controlling the vehicle. 

Camera  

Operating 
procedure 
sequence 

Order in which a driver performs 
actions and the relative timing 
between these events. This can be 
measured in a variety of 
circumstances, i.e., when preparing 
to start driving, while turning, exiting 
the vehicle, etc. 

See above, plus timing. N/A 

 Table 1: Potential Driving Modalities and Associated Sensing Hardware 
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Figure 3: A Pressure Sensor Being Tested with an Oscilloscope 

 

 
Figure 4: A Pressure Sensor Deployed on a Logitech G27  

Racing Wheel Controller 
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Simulation Study Setup: 
We made use of a Logitech G27 steering controller, pictured below, to present our 
volunteers with as realistic of a driving experience as possible. 

 

 
Figure 5: The Logitech “G27 Racing Wheel” Controller 

 
 

We then considered various driving simulators to determine if any present a realistic 
enough driving experience to derive meaningful modeling data from. A secondary goal 
was to assess the ease at which such simulations can be modified to extract behavioral 
data.  

 
We identified the driving simulations listed in Table 2 and tested their suitability for our 
experimental goals. 

 
Simulator Website 

OpenDS http://www.opends.de/ 

TORCS http://torcs.sourceforge.net/index.php?name=Sections&op=viewarticle&artid=3  

VDRIFT http://vdrift.net 

Speed Dreams http://www.speed-dreams.org  

Racer http://inkeepr.com/updates/?gclid=CN6V17OzicYCFY2RHwodd4YAqQ  

CARS http://cars.pcuie.uni-due.de/index.php?id=6  

Table 2: Driving Simulation Software 
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Figure 6 shows a graduate research assistant in the process of testing the OpenDS 
driving simulator [26]. 
 

 
Figure 6: A Research Assistant Testing the OpenDS Driving Simulator with 

the Logitech G27 Controller. 
 

 
 
Each driving simulator was assessed along five metrics: ease of setup, modifiability with 
respect to software instrumentation, scenario flexibility, computer resource load, and the 
realism of the driving experience.  The results of our experience working with each 
simulator to this point is detailed below. 
 

OpenDS 
Website: http://www.opends.de/    
 
OpenDS is compatible with Windows and our steering controller hardware. The 
project is open source, so its code was easily available and easy to modify. 
OpenDS is built on a JAVA platform. Proper documentation is available for 
modifying its source code to better suit the needs of our study; this extensive 
documentation includes video tutorials and webinars for deeper understanding of 
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the simulator. Its source code is well structured and organized, which facilitated 
our modification of its logging capabilities to output additional relevant data on 
user interactions. 
 
The OpenDS maintainers have integrated third party tools to develop unique 
feature like scenario recording and replay. OpenDS offers several preconstructed 
scenarios. These are created using version 3 of the JavaMonkey Engine. This 
framework makes it easy to add 3D objects such as stationary cars and road 
signs. Adding objects which interact with their environment in a realistic manner, 
such as more traffic, has proven to be relatively difficult, however.  
 
Performance snapshot: Memory consumption - 4.51 GB, CPU Utilization - 45%.  

 
TORCS 
Website: 
http://torcs.sourceforge.net/index.php?name=Sections&op=viewarticle&artid=3  

 
TORCS is a 3D racing car simulator. Although it is compatible with Windows as 
well as Linux, TORCS has many libraries and dependencies that need to be 
installed. We were nonetheless able to compile and execute this software without 
encountering any issues. The limited documentation provided by TORCS made 
modifying its code difficult, however. 
 
TORCS offers one default scenario and instructions for creating new ones were 
also lacking. Although there are many different kinds of cars offered and an 
engine for creating new racing tracks, there did not seem to be a mechanism for 
adding traffic, pedestrians, or other everyday driving elements. Overall this 
program seemed more suitable as a “racing” game rather than a platform for 
studying realistic driving behavior. 
 
Performance snapshot: Memory consumption - 3.42 GB, CPU Usage - 36%. 
 
VDRIFT 
Website: http://vdrift.net  

 
VDrift is an open source driving simulation which focuses on drift racing. It 
supports Linux, MacOs and Windows. It written in C++ and inspired by the 
vamos physics engine. We found this software to be difficult to work with due to 
incomplete documentation.  
 
VDRIFT comes with one predesigned scenario which mainly focuses on a drifting 
style racing game. There is no documentation provided regarding how to create 
new scenarios. Much like TORCS, VDRIFT seems better suited to racing usage 
rather than real world driving. 
 
Performance snapshot: Memory Usage - 3.16 GB, CPU Usage - 34% . 
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Speed Dreams 
Website: http://www.speed-dreams.org  

 
Speed dreams is an open source motorsport driving simulation. It is compatible 
with both Windows and Linux. We could not locate documentation for scenario 
creation. Various stock scenarios are offered, but none corresponded to 
everyday driving.  
 
Memory Performance snapshot: 4.32 GB, CPU Usage - 42% 

 
CARS 
Website: http://cars.pcuie.uni-due.de/index.php?id=6  

 
CARS is an open source driving simulator which is can be compiled for Windows. 
It uses a Java and C++ based platform which is easy to manipulate. CARS 
consists of a driving simulation tool, map editor, and an analysis tool. The map 
editor allows to new scenarios to be created easily with the JavaMonkey Engine. 
Unfortunately documentation was sparse and we encountered several hardware 
compatibility issues. For instance, the code does not run on 64-bit environments 
by default.   
 
Performance snapshot: Memory Usage - 3.30 GB, CPU Usage - 47% 

 
Driving Study Simulation Task Development: 
Having concluded, based on aforementioned driving software assessment, that the 
most realistic and easily utilized option for an initial study is the OpenDS project, we 
proceeded to create a scenario that was appropriate for collecting data on people’s 
driving behavior. This scenario was intended to group drivers into behavior clusters 
(such as cautious and aggressive) and identify the driving habits of an individual. 

 
OpenDS provides choices to control the weather and it’s intensity in a scenario. Options 
include rain, snowfall, and fog. OpenDS also allows scenario designers to control the 
friction between the wheel and the road. Traffic vehicles in the scenario are modeled to 
keep a safe distance from the driving vehicle.  
 
The maintainers of OpenDS provide several default scenarios with the program’s 
source code, including a countryside and city environment. In OpenDS, scenario 
creation is handled using version 3 of the Java Monkey Engine. As a first step, we 
imported the provided “j3o” scenario files and modified them. We reviewed the scenes, 
models, textures, and materials used in the provided scenarios. We made us of the 
Blender 2.7X 3D modelling software to generate these files.  

 
We inserted new objects in our scenario to create more “events of interest” which were 
intended to induce responses which may involve discriminative driving behavior. For 
example, signs were inserted so that we could analyze the responses that they induced 
when encountered by our study participants.  
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Additional Python scripts were needed to generate an ORGE Mesh file and a 
corresponding scene file. This required the implementation of a Java class to convert 
the mesh.xml file to a J3O file [27]. Once this was completed we were able to add new 
objects to driving environments. For example, Figure 7 shows a car object placed on a 
blank field. OpenDS allows  stationary objects to be positioned in a scenario without 
having to import it in Java Monkey Engine by using the object locator. With the help of 
the object locator we can insert stationary object in the scenario at various positions.  

 

 
Figure 7: A Screenshot of an Unpopulated OpenDS Map 

 
 

Inserting traffic into a scenarios requires using an OpenDS concept know as 
“waypoints.” Waypoints are the coordinates that are given to the 3D object in order for it 
to traverse a scenario map. Since it is a 3D plane the waypoints are provided along 
three (x,y,z) planes. Various parameters for the object like rotation, scaling, translation 
are available to position the object accordingly in the scenario. Rotation allows for the 
placement of objects according to different viewpoints. Scaling allows the sizes of 
objects to be manipulated. Lastly, translation allows objects to be positioned withina 
scenario environment.   

 
Next, we added many objects to our OpenDS-based driving simulation in order to 
improve its realism. We have successfully added the traffic in the form of cars and 
pedestrians as well as road signs to our testing scenario. We have also inserted traffic 
lights in our scenario to make the scenario more realistic by providing drivers with 
another roadside component to react to. “Waypoint” coordinates in 3D space must be 
assigned to objects to move them through a specific path. We also used OpenDS’s 
object locator functionality to calculate object waypoints.  
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Preliminary Human Subject Study with Driving Simulation 
Using the features identified in the previous section, we created a scenario for 
preliminary data collection where each user can complete the whole driving task in 5 
minutes by following signs and traffic lights. We recruited 10 test subjects from the NYIT 
community and asked them each to perform 4 5-minute laps, therefore we collected 
approximately 20 minutes of driving data per subject. The most critical decision of the 
data collection is the parameters to be considered to discriminate each user’s behavior 
from one another. We have collected 6 parameters of each user’s driving activity, 
namely a timestamp, Position (X, Y, and Z coordinates), speed (km/hr), steering wheel 
position, gas pedal position, and brake pedal position. As an example, a snapshot of 
approximately 1-sec driving data collected from a single subject is shown in Figure 8. 

 

 
Figure 8: “Raw” or unprocessed data collected from the OpenDS driving 

simulator 
 
Exploratory Modeling and Analysis of Preliminary Data 
With the groundwork laid by the efforts described in the previous sections, we were able 
to concentrate on getting the most meaningful data from our study. The core goal of our 
experiments was to classify users based on their driving behaviors. We developed a 
feature extraction and representation methodology which distills the data that was 
captured by the simulator into statistical measurements that are optimized for behavior 
classification. Our preliminary analysis included an unsupervised learning algorithm, 
namely K-means clustering, and supervised learning algorithms, such as the naïve 
bayes and Support Vector Machines (SVM) classification algorithms. 

 
After completing the data collection on our participants’ driving habits, the data is stored 
in a MySQL database. Next, pertinent information is extracted and discriminative 
features with a potential to distinguish drivers are identified. The original or “raw” data 
output from the simulator is shown in Figure 8. Note that this snapshot in Figure 8 
shows only a brief recording for illustrative purposes and it is not representative of the 
discriminative properties of the collected data for distinguishing drivers. Furthermore, we 
hypothesized that higher-level features would be more representative of driving 
behavior and thus more discriminative when used as a classifier. 

 

Time (minutes:seconds:miliseconds) X Position Y Position Z Position X Rotation Y Rotation Z Rotation W Rotation  Speed (km/h)  Steering Wheel Position  Gas Pedal Position  Brake Pedal Position 
0:0:0 -135.421 -0.47 -51.307 0.0009 -0.7142 0.0009 0.6999 53.04 0.00186 1 0

0:0:48 -134.948 -0.47 -51.297 0.0009 -0.7141 0.0009 0.7 53.39 0.00186 1 0
0:0:96 -134.471 -0.47 -51.288 0.0009 -0.714 0.0009 0.7001 53.74 0.00186 1 0

0:0:150 -133.992 -0.47 -51.279 0.0009 -0.7139 0.0009 0.7002 54.1 0.00266 1 0
0:0:185 -133.509 -0.47 -51.27 0.0009 -0.7138 0.0009 0.7004 54.46 0.00266 1 0
0:0:221 -133.023 -0.47 -51.262 0.0009 -0.7136 0.0009 0.7005 54.82 0.00266 1 0
0:0:258 -132.533 -0.47 -51.253 0.0009 -0.7135 0.0009 0.7007 55.18 0.00266 1 0
0:0:290 -132.041 -0.47 -51.245 0.0009 -0.7133 0.0009 0.7009 55.54 0.00266 1 0
0:0:334 -131.545 -0.47 -51.237 0.0009 -0.7131 0.0009 0.701 55.91 0.00266 1 0
0:0:370 -131.046 -0.47 -51.229 0.0009 -0.713 0.0009 0.7012 56.27 0.00266 1 0
0:0:412 -130.544 -0.47 -51.221 0.0009 -0.7128 0.0009 0.7014 56.64 0.00266 1 0
0:0:454 -130.039 -0.47 -51.213 0.0009 -0.7126 0.0009 0.7015 57 0.00351 1 0
0:0:495 -129.53 -0.47 -51.206 0.001 -0.7125 0.0009 0.7017 57.37 0.00351 1 0
0:0:536 -129.018 -0.47 -51.199 0.001 -0.7122 0.0009 0.7019 57.74 0.00351 1 0
0:0:626 -128.503 -0.47 -51.192 0.001 -0.712 0.0009 0.7022 58.11 0.00351 1 0
0:0:659 -127.984 -0.47 -51.186 0.001 -0.7118 0.0009 0.7024 58.48 0.00351 1 0
0:0:694 -127.462 -0.47 -51.18 0.001 -0.7116 0.0009 0.7026 58.85 0.00431 1 0
0:0:732 -126.937 -0.47 -51.174 0.001 -0.7113 0.0009 0.7029 59.22 0.00431 1 0
0:0:773 -126.408 -0.47 -51.169 0.001 -0.711 0.0009 0.7032 59.59 0.00431 1 0
0:0:813 -125.877 -0.47 -51.164 0.001 -0.7107 0.0009 0.7034 59.96 0.00431 1 0
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Figure 9: Features extracted by processing the driving data collected from the 

OpenDS driving simulator 
  
Initially, we chose five features as potential discriminative characteristics to capture 
each subject’s unique driving pattern (1) Euclidean distance travelled, (2) average 
vehicle speed, (3) the standard deviation of the steering wheel positon, (4) the 
average change of brake position, and (5) the average change of acceleration 
positon. To measure how well these features captured patterns specific to a driver, 
we calculated Fisher’s Score [fisher] based on the five high-level features. We use 
one-dimensional variation evaluating the value of each feature independently via the 
ratio of the inter-class and intra-class variance as shown below: 

 

𝑠 =
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∑ 𝜎௜
௞
௜ୀଵ

 

 

               𝜎௕ = ට∑ (𝑚௜ −𝑚ீ)
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The Fisher scores for both the average values of our “raw” driving data and our 
derived features is shown in Table 1. Based on these results we will focus our 
attention on steering, both pedals, X and Z position, and Y and W rotation. This is 
valuable information both for guiding our future modeling efforts and updated driving 
scenario for a broader data collection effort. 
 

Feature Fisher Score 
Distance Travelled 0.0042 
Average Speed 0.0035 
Standard Deviation of Steering Position 0.7556 
Average Change in Brake Pressure 8.2819 
Average Change in Accelerator Pressure 13.809 
Average X Axis Position 13.809 
Average Y Axis Position 0.0003 

Driver ID Distance Traveled Average Speed
Standard Deviation of 
Steering Wheel Position

Average Change 
in Brake Position

Average Change 
in Accelerator Position

Average 
X Position

Average 
Y Position

Average Z
Position

Average
X Rotation

Average
Y Rotation

Average
Z 
Rotation

Average 
W Rotation

0 55.9785 52.92033 0.02713 0.01667 0.01667 -103.422 -0.46965 -50.9377 0.0006 -0.71631 0.0007 0.69744
0 13.41303 12.51967 0.02112 0.01639 0.01639 -71.5894 -0.46974 -50.5204 0.00084 -0.69838 0.00078 0.71564
0 39.65633 36.54194 0.18131 0 0 -58.6749 -0.46982 -40.745 0.00046 0.4187 -0.00047 0.19952
0 82.61378 76.58033 0.01895 0.00318 0.00813 -57.3336 -0.46999 19.03712 -0.00001 0.99983 -0.00129 -0.00626
0 38.49689 35.62184 0.17445 0.01281 0.008 -52.3857 -0.46954 84.15809 0.00002 0.39968 -0.00014 0.15095
0 63.49857 59.2778 0.0218 0 0 -11.3237 -0.47 87.98444 0.00089 -0.70819 0.00093 0.70582
0 84.44627 85.19876 0.00381 0.01424 0.00885 68.94776 -0.46965 88.15843 0.00068 -0.70582 0.0007 0.70838
0 35.66643 33.4048 0.01876 0.0155 0.02071 134.038 -0.46941 87.6901 0.00063 -0.70695 0.00064 0.70714
0 26.4544 24.1868 0.0901 0 0.00169 152.6123 -0.46994 84.00558 0.00131 -0.49125 -0.00002 0.82333
0 70.33792 65.61598 0.01619 0 0 159.7704 -0.47 38.86499 0.0013 -0.0031 0.00004 0.99982
0 36.66649 34.17333 0.01725 0.01626 0.01626 160.5755 -0.46949 -28.3427 0.00081 0.01643 -0.00006 0.99978
0 40.80579 37.27605 0.16628 0 0 167.9782 -0.46987 -47.8694 0.00083 -0.38068 0.00117 0.84754
0 79.5926 74.78779 0.01049 0.00359 0.0082 226.1545 -0.46981 -51.7381 0.0008 -0.70338 0.00091 0.71073
0 21.21062 19.49246 0.02658 0.01147 0.00794 283.1357 -0.46952 -51.9179 0.00071 -0.69072 0.00056 0.72274
0 49.1395 45.80902 0.10694 0 0 298.4059 -0.46981 -69.6901 0.00143 -0.1602 -0.00044 0.95415
0 87.05216 80.32339 0.03376 0.00416 0.00806 298.937 -0.46969 -139.834 0.00114 0.01058 -0.0003 0.99954
0 96.84792 89.50371 0.08935 0 0.01613 255.9343 -0.46977 -194.037 0.00016 0.63957 -0.00206 0.74803
0 35.20955 32.29992 0.02205 0.03094 0.008 177.4186 -0.46926 -194.245 0.00062 0.71522 -0.0004 0.69881
0 33.09369 30.78959 0.10547 0 0 160.5121 -0.46992 -187.013 -0.00015 0.87965 -0.00137 0.36175
0 78.15263 71.23448 0.00664 0.00406 0.008 155.7826 -0.46993 -133.395 0.00004 0.99999 -0.00127 0.00456
0 26.33133 24.22232 0.01842 0.0225 0.008 155.3375 -0.46908 -68.8631 -0.00005 0.99971 -0.00076 -0.01834
0 29.44231 26.53437 0.01637 0 0 155.6814 -0.47 -53.1641 -0.00001 0.99988 -0.0013 -0.01313
0 74.50925 68.59847 0.0023 0 0.00265 156.2514 -0.47 -0.32367 0 1 -0.0013 -0.00157
0 26.03831 23.96864 0.00157 0.016 0.01188 156.3982 -0.46942 61.37842 -0.00001 0.99998 -0.00081 -0.00799
0 43.69866 39.90484 0.09736 0 0 164.2882 -0.46988 81.49371 -0.00002 0.29683 -0.00044 0.18845
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Average Z Axis Position 73.1598 
Average X Axis Rotation 0.0002 
Average Y Axis Rotation 27.0113 
Average Z Axis Rotation 0.02838 
Average W Axis Rotation 14.0953 

Table 3: Fisher scores for driving features 
 

We initially experimented with unsupervised learning to determine if this technique 
would be sufficient to derive any insights from our preliminary dataset. We first 
attempted to partition our user data into three clusters. The main idea is to define k-
centroids around which each centroids data is to be clustered. The next step is to take 
each point belonging to given data set and associate it to a nearest center. The best 
result occurs when each cluster is far away from other clusters.  

 

 
Figure 10: The result of using k-means clustering to divide the dataset into 3 

clusters 
 

From Figure 11 we can conclude that 0.82% of our sample data was incorrectly 
classified. Figure 12 displays a graphical representation of the clustering 
process, showing how much data from each user fell into each cluster. 
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Figure 11: Evaluation of Clustering Accuracy 
 

 
Figure 12: Clustering Visualization 

 
 
 
Another clustering approach we experimented with is known as Expectation 
Maximization (EM). EM assigns a probability distribution to each sample which 
indicates the probability of it belonging to each of the clusters. EM can decide how 
many clusters to create by cross validation, or we can specify how many clusters to 
generate. We used 10 Fold Cross Validation and Number of clusters equal to 3, 
yielding the following results: 
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Clustered Instances 
0       553 ( 43%) 
1        90 (  7%) 
2       658 ( 51%) 

 
Log likelihood: 0.37577 

 
Cluster 0 <-- E94F0128-FBFB-40EC-A5EC-9005FDF49178 
Cluster 1 <-- 817B7B48-FDC8-4BFB-ADE7-2EC8B273F025 
Cluster 2 <-- A46B927F-3A8B-4DF7-BEA5-09362CF84DE2 

 
Incorrectly clustered instances: 1032.0   79.3236 % 

   
We can see that User 3, 5 and 8 are uniquely assigned to different clusters. Also, 
the correctly clustered instances in this case correspond to about 20.68%. Figure 13 
indicates the average speed in the of the cluster assignments. Average Speed is 
plotted on the X axis with Class (user) on the Y axis. The coloring is based on what 
cluster each sample was assigned to. 

 
 

 
Figure 13: EM Clustering Visualization 

 

 
Figure 14: Classification via Clustering Results 
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Figure 15: Cluster and Class Mapping Output 
 

An alternative modeling approach is using clustering as a rough form of a classifier; this 
process is known as classification via clustering. This method uses clustering result for 
the classification. Figures 14 and 15 show the results of using clustering in order to 
classify our collected driving data. As per Figure 14, the class 7, 8 and 10 falls in cluster 
1, 3 and 2 respectively. The proportion of correctly classified instances is quite small, 
which we took as an indication that classification via clustering should not be pursued 
further. 
 

 

 
Figure 16: Confusion Matrix for Classification via Clustering 
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As shown in Figure 16, classification via clustering results in a 0% true positive rate for 
some classes, which underscores that this combination of algorithm, features, and 
application are not a viable combination. 

 
Since clustering resulted in limited classification quality, we moved on to more powerful 
supervised learning techniques. We were successfully able to collect basic results from 
Classification using SVM (SMO, libsvm – cSVC and One Class) and Clustering using 
the EM algorithm. All tests are performed in WEKA [weka], a machine learning software 
suite written in Java. 
 
The first supervised classification approach we tried was to classify the data using 
Support Vector Machines (SVM). SVMs infer a function based on trained labeled data 
and uses it to map new data. SVM performs classification by constructing hyperplanes 
in a multidimensional space that separates cases of different class labels. In Weka, 
Class SMO implements John Platt's sequential minimal optimization algorithm for 
training a support vector classifier. It solves the multi class problem using a pairwise 
classification. For example, it first compares and solves User 1 and User 2, then User 1 
and User 3 and so on for User 1 and all other Users.  
 
We plotted ROC and Detection Error Tradeoff (DET) curves to provide a fair 
comparison between these disparate classification techniques. An ROC curve is a plot 
of a classifier’s true positive rate, or sensitivity, against it’s false positive rate as the 
threshold for classification is altered. Values to the lower left of the ROC curve 
represent more conservative threshold values, with less false positives (i.e., false 
alarms about an authentic driver’s identity) but also less true positives (i.e., a less 
successful unauthorized driver detection rate). The upper right of the ROC curve, on the 
other hand, shows less conservative thresholds where attacker detection is maximized 
at the cost of increased false positives. Because the goal of driver classification is to 
maximize the true positive rate of detection while minimizing the number of false alarms 
raised during regular driving activities, the goal is to maximize the area under the ROC 
curve (AUC). 

 
DET curves are very similar to ROC curves in that both plot classifier performance as a 
function of threshold adjustment. A DET curve plots a classifier’s true positive rate 
against its false positive rate, however, while a DET curve instead plots a classifier’s 
false rejection rate against its false positive rate. DET curves are useful for visualizing 
the relationship between these error rates. The point at which both error rates equal 
each other is known as the Equal Error Rate (EER).  
 
The default implementation of SMO is not probabilistic and only a single optimal value 
of threshold is provided. This basic test with a Linear Kernel and 10 Cross Validation 
resulted in an Area Under the Receiver Operating Characteristic curve (AUC) area of 
0.684. The correctly classified Instances were 30.82%. SMO also normalizes the input 
data and requires the class attribute to be nominal. 
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To improve the AUC of our classification results, we need to assign probability values to 
SVM predictions. In Weka, we do this using Logistic Models. We conducted our test 
with, setting this attribute to True and C to 10.0. 
 

 
 

Figure 17: A Receiver operating characteristic curve for one study participant. 
 
Figure 17 shows the Reciever Operating Characteristic (ROC) curve for user 1. It is 
plotted with X axis as False Positive Rate and Y axis as True Positive Rate. The 
coloring in the graph is based on the Threshold. The blue part represents lower 
threshold. Figure 18 shows thee ROC area obtained for the all the users. Users 1, 3, 5 
and 8 were better classified than other users. With LogisticModels set to True and C = 
10.0, the average AUC went as high as 0.812 and correctly classified instances 
improved to 42.20%. The Kappa Statistic (analog to Correlation Co-efficient) is 0.3399.  
 
 

 
 
Figure 18: The area under the curve values for each participant in our user study 
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In addition to assigning probabilities to SVM, we tried the effects of parameter C and 
different kernel Types on the ROC area. Figure 19 shows the effect of C on the average 
ROC area. C is a budget for the slack variables which allows some instances to be on 
the wrong side of the hyperplane. Higher C means a smaller budget and thus a more 
stringent hyperplane which aims to misclassify fewer training examples. Default value of 
C is 1.0. We see that for C = 1.0, we get a lower ROC area (nearly 0.74). In other 
words, the higher the value of C, the higher is the ROC area.  

 
 

Figure 19: The effect of C on average user AUC 
   
To test the effect of different kernels, we can set the required exponent value for the 
kernel in Weka. Linear (Exponent -1.0), Quadratic (Exponent- 2.0), Polynomial( 
Exponent- 3) or higher. Figure 20 shows that the linear kernel is the best as it gives the 
maximum ROC area. Tests with 5 fold cross validation results in the almost the same 
percentage of correctly & incorrectly instances as 10 fold with slight difference in 
decimal points. Also, increasing the folds to 15 results in higher value of incorrectly 
classified instances. 

 
With an objective of further improving the ROC area – and hence improving the 
accuracy of classification, we then conducted our test using LIBSVM [28]. LIBSVM is a 
wrapper class for libsvm tools. It is a free package  and can be added to Weka. LIBSVM 
is faster than SMO as it uses libSVM to build the SVM classifier. But LIBSVM uses a 
similar algorithm as SMO. Among 5 SVM types of LibSVM, we conducted our basic test 
with C-SVC and One Class. C-Support Vector Classification(C-SVC) performs 
classification for two class or multi- class problem.  We used the default parameters to 
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run the test, SVM Type 0 – c-SVC : A Radial basis function as kernel type, nu as 0.5 
and 10 folds Cross Validation. C-SVC doesn't normalize the data as in SMO. We get 
correctly classified instances of nearly 35% and the average ROC area is 0.628. 

 
To improve the ROC area here, we programmed LIBSVM to assign probability values, a 
linear kernel, and a cost value of 10.0. For this test, we get an average ROC area of 
0.812 ( SMO - 0.811) and  correctly classified instances of 41.35% ( SMO – 42.20%). 
Users 1, 3, 5 and 8 are better classified than the others. The Kappa statistic is 0.327( 
SMO – 0.339). Figure 21 shows the effect of different kernel types on Average ROC 
area. Linear kernel gives the best ROC area. The Polynomial, Radial Basis function and 
Sigmoid kernel types depend on the value of gamma (default – 0.0), coef0( default -1.0) 
and degree(default -3). We used the default values for comparison below. 
 

 
Figure 20: Effect of kernel type on AUC 
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Figure 21: Effect of kernel type on LIBSVM classification 

 
We experimented with other types of classification kernels in order to maximize our 
classification performance. There was a slight improvement in AUC when we used a 
linear kernel instead of the Weka-default polynomial kernel. With this type of kernel, the 
maximum true positive rate obtained for the 10 user dataset is 38.58%, which is less 
than the 42.2% obtained in with a polynomial kernel. However, the AUC increases to 
0.816, which is slightly more than the 0.812 value achieved using a polynomial kernel. 
The Pearson VII function based universal kernel showed even better performance, with 
a TPR of 43.5% and an AUC of 0.842.  

Another useful metric of comparison for classifiers is the equal error rate (EER). This is 
the threshold point at which both acceptance and rejection errors are equal. We wrote a 
scikit-learn python script to perform the libsvm test and output the classification 
prediction values. A machine learning toolbox known as Bob [Bob] was utilized in order 
to find the EER for our classifier. The measure module in Bob has a function to calculate 
the EER and threshold values. The script considers 10% as testing set, with probability 
estimates set to true and C=10.0.  
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We also sought to model our driving data as a one class problem instead of a multiclass 
one, which more accurately captures the task of driver identification. For these tests we 
organized each user’s driving sessions into three laps of training data and one lap of 
test data. Training was done on a per-user basis, while testing involved all users’ test 
sets. We performed the libsvm one class classification test for a single user and 
achieved a 49% TPR. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: EER and Corresponding Threshold Values 

 

 



 
UTRC Project Final Report  31 
 

We performed further analysis on the Fisher score of some features which were 
producing result which were contradictory our expectations. After reviewing our data 
processing scripts and manually calculating Fisher score, we found the problems lies in 
the formatting of OpenDS’s output data. Therefore, a script was written to preprocess 
the data with changes such as truncating certain features to 2-decimal points, changing 
data scope which is negative to the positive one, as well as coordinate transformation.  
 

 
Figure 23: Updated Fisher Scores 

 
 

As an example of another data processing step, we plotted our drivers’ X and Z 
coordinates to ensure they met our expectations. As shown in Figure 24, the plot of 
driving coordinates closely matched our designated route in a majority of cases. 
 

 
Figure 24: Plot of Position Coordinates for Study Test Runs 
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Finalized Analysis of Preliminary Study Data 
The exploratory analysis presented in the previous section allowed us to derive a 
deeper understanding of driving behavior. We utilized this experience to determine how 
the collected data should be sanitized, pre-processed, organized into high level 
features, and modeled in order to accurately derive conclusions about driver identity 
from a set of non-intrusive features. This section describes the finalized results we were 
able to derive from our observations of users’ driving traits. The analysis we performed 
on our preliminary simulated driving dataset concludes that it is possible to authenticate 
a driver in less than 2.5 minutes with 95% confidence and a false positive rate of less 
than once per driving day using only non-invasive sensors. 

We chose five non-invasive features as potentially discriminative characteristics 
extracted from measurements to capture each subject’s unique driving pattern: (1) 
Euclidean distance traveled, (2) average vehicle speed, (3) the standard deviation of the 
steering wheel position, (4) the average change of brake pedal position, and (5) the 
average change of gas pedal position. These features were selected for a combination 
of practical and theoretical considerations. The OpenDS driving simulation software’s 
logging functionality allowed easy access to low level driver tracking details from which 
each of these features could be derived. Additionally, we felt that these features would 
be good candidates for capturing driving activity because they covered a wide range of 
the various controls one must utilize in order to drive proficiently. We also included the 
vehicle’s location coordinates and rotation in order to provide a basis for comparison 
with our derived features. 

We applied a variety of different machine learning algorithms to our collected feature set 
in order to assess their ability to discern between individuals as they operated a vehicle. 
We implemented Matlab scripts to apply 3 different supervised learning algorithms to 
our data: Decision Trees, Support Vector Machine (SVM), and k-Nearest Neighbor 
(kNN). We also attempted to apply a boosting to increase our classification accuracy: 
instead of using all features for classification, various subsets of features are used and 
classification is determined by which grouping is indicated by a majority of the learners. 
In the case of k-Nearest Neighbor, this is referred to as the random subspace method 
[29]. For decision trees, this results in an approach known as Random Forests [30]. 

We explored the application of multiclass modeling processes to the task of driver 
identification in order to perform a comparison of alternative modeling techniques. In 
practice, however, a particular driver’s vehicle would not have access to information 
regarding how other drivers operate their vehicles. Furthermore, even if this information 
was available, it would be very difficult to scale to all users in a busy driving area. For 
this reason, one class models, which require only positive samples of an authentic 
driver’s behavior patterns, are much better suited to the context of driver authentication. 
To see how a one-class model would perform with respect to our driving features, we 
applied a one-class Support Vector Machine (oc-SVM) to our data to create a separate 
model for each user. Each user’s model was trained with 80% of their driving samples, 
while the remaining 20% of driving logs were reserved for testing. Each user’s model 
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was trained only using their driving data, but driving data from all ten subjects was used 
to test the classification accuracy. 

Since ROC curves express binary classification information, our curve plots were 
performed on a user by user basis. Figure 25 shows ROC curves which result from 
multiclass SVM classification for all ten participants. In addition to the ROC curves, 
Figure 25 also provides AUC values for each study participant that resulted from 
training an SVM on our driving features with a Polynomial kernel and applying 10-fold 
cross validation; the average AUC across all users is 0.8138. 

Figure 26 presents a DET curve for multiclass SVM classification averaged across all 
users. Our multiclass driver detection SVM was capable of authenticating drivers with 
an EER of 24.9%. 

Figure 25: ROC Curves for Multi-Class SVM Classification of All Study 
Participants 

The per-user AUC values were averaged together to produce an AUC for each 
classifier, which is displayed in Figure 27 as a box-and-whisker plot. Decision 
trees displayed a similar classification performance to SVMs on average, 
resulting in AUC values of 0.902 and 0.91 respectively. However, decision 
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trees also fell into the lower quartile for a larger portion of users. The kNN 
approach displayed the worst overall performance, with an average AUC of 
0.781. Though boosting did increase the average AUC to 0.8 for kNN, it also 
resulted in very poor performance for some users, with an AUC value as low as 
0.35. Though boosting decision trees to produce a random forest ensemble 
learner increased the average AUC to 0.932, we believe this gain may be due in 
part to overfitting on our relatively small sample size. 
 

 
Figure 26: Average DET Curve for Multi-Class SVM Classification 

 
 
The Fisher scores for both the average values of our raw driving data and our 
derived features are shown in Table 4. The features are listed in ascending order 
by their Fisher score. These scores capture the ratio of between-class and 
within class variance, which essentially means that higher ranked features are 
more consistent for a particular driver over time, and more unique between 
different drivers. From Table I, it is easy to see that our derived values have more 
discriminative power than the “raw” rotational and coordinate values collected 
from the simulator; recall that the coordinates are roughly equivalent to 
geolocation information. The third column of Table 4, labeled “Classification 
Contribution,” contains another measurement of the suitability of each feature to 
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the task of driver modeling. This value is obtained by removing the feature from 
our SVM modeling process and observing the new true positive classification 
accuracy. The new TPR is subtracted from the original to obtain the classification 
contribution. 
 

 
Figure 27: Multi-Class Model AUC Comparison 

 

 
Table 4: Fisher Scores for Driving Features 
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As shown in Table 4, the classification contributions are correlated with Fisher 
values, with higher valued features having larger contributions to the overall 
modeling process. A notable exception is the Distance Traveled and Average 
Speed. The reason why SVM modeling retains its classification accuracy 
when either of these features is removed is due to the fact that they are highly 
correlated, thus removing one or the other only removes a small amount of 
information from our models due to the redundancy in these features. Some 
measurements, particularly the Y axis position, which represents elevation, are 
consistent across all users. The Fisher score and classification contributions 
confirm that these features are not discriminative. Including the Y and W 
rotational axes in our model even turned out to be detrimental to classification. 
We believe the reason for these features to have non-zero Fisher scores is 
due to noise in the underlying data introduced by very small variations in the data 
logged by the simulation. 
 

 
Figure 28: ROC Curves for One Class SVM Classification of All Study 

Participants 
 

Figure 28 shows the ROC curves achieved for each driver using the per-user oc-SVM 
modeling process, while Figure 29 displays the average DET curve for all users. The 
oc-SVM achieved an average AUC value of 0.9219 and an EER of 14.7%, which 
represents an improvement over multi-class modeling in terms of both metrics. This is 
due in part to the fact that the one-class modeling process is asking a less specific 
question than the multi-class example. The multiclass model is essentially asking “Are 
you driver X or driver Y,” while the one-class model asks “Are you driver X or a different 
driver?” 
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We selected one false positive per driving day as a reasonable performance 
target. According to a recent study, the typical driver spends 46 minutes in his or 
her vehicle per day on average. Our model works using a 10 second sampling 
interval. Thus, to achieve a false alarm occurrence rate of one per 46 driving 
minutes would require a FPR of 0.362%. 

 
Figure 29: Average DET Curve for One Class SVM Classification 

 
 

At this very restrictive FP rate, our oc-SVM model of driving behavior is capable of 
performing driver classification with a detection rate of 19.5%. This means that in any 
one particular time window there is a 80.5% change of an illicit driver avoiding detection. 
The following equations calculate how many 10 second samples would be required to 
ensure that any unauthorized drivers are detected with at least 95% confidence: 

 
0.805x < 0.05 

x < log(0.05)= log(0.805) 
x < 13.81 

 
From an operational perspective our oc-SVM model of driving behavior can successfully 
detect illicit vehicle usage with 95% accuracy after 14 samples, or 2 minutes and 20 
seconds of driver data collection, while keeping false alerts to once per driving day at 
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most. These results show that identifying drivers is feasible in practice with active 
behavior modeling without incurring any significant computation or high false positives. 
 
Simulation Enhancements for Broader Driving Behavior Study: 
We applied lessons learned from our preliminary data collection to determine how to 
improve our experiment prior to running it with a broader population. Our simulation was 
enhanced with additional driving challenges which we felt would elicit potentially 
discriminative responses from users.  

 
We were able to successfully manipulated the scenario in order to add objects and 
make our driving tasks as realistic as possible. Our simulation now allows us to 
measure user behavior in the presence of interaction models and triggered events such 
as additional traffic, vehicles, pedestrians, and traffic lights. 

 
We attempted to add complexity to our simulation’s driving course of map by using the 
build-it “City” model which is included with OpenDS. Unfortunately this model caused 
performance issues in OpenDS which affected its responsiveness, making it 
inappropriate for use in our studies. Efforts were also put into updating the model 
structure but this did not result in a substantial performance improvement either.   

 
 

 
Figure 30: OpenDS Screenshot with Side and Rearview Mirrors Included 

 
Additional simulation changes which we added in preparation for our next round of data 
collection include blinkers, side and back mirrors. Blinker usage timing is another 
feature for potential modeling. We believe that both changes will help provide 
participants with a more realistic driving experience. 
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Figure 31: OpenDS Screenshot with Left Blinker Enabled 

 
New Features for Extended Study: 
Extracting new attributes can clearly have a significant impact on analysis and 
modeling. Recall that the core aim of our project is to provide security and privacy to 
users via a sensing system that is decoupled from a vehicle’s critical networks. To this 
end, we altered the code of the OpenDS driving simulation software to allow for the 
collection of new attributes including lane position, blinker usage, and distance between 
cars. Collecting lane position data allows information on how often a driver deviates 
from his or her lane, which could be a potentially discriminative feature of driving 
behavior.  

 
The following diagram shows the position of the entire lane (currentLane = 0). On the 
left hand side, the driver is driving on the LaneID = 2 side of the lane. In the right hand 
diagram, we see that the min is actually the center of the whole lane and the max 
represents the edge of the lane. Drivers are only driving in the correct lane when they 
are driving in the positive section of the laneID and under the lane width.  
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Figure 32: Measuring a Driver’s Lane Position 

 

Another driving attribute which we are considering is the distance between 
vehicles. This property is typically used to help determine if a driver is safe or 
unsafe. If driver is close to leading vehicles, the driver is in rush. If the driver is 
close to trailing cars, on the other hand, this implies that he or she is progressing 
slowly compared to surrounding traffic. Figure 33 shows a raw driving log sample 
which includes our new features of potential interest. 
 

 
 

Figure 33: Raw OpenDS Data Sample including New Features 
 

Large Scale Study of Simulated Driving Behavior 
Following our successful preliminary data collection with 10 users, our aim was to 
gather data of almost from a larger pool of participants with more features as they 
perform a more realistic driving task. We secured gift cards to provide to participants as 
reimbursement. Furthermore, we prepared several instruments to aid in our study and 
data collection efforts. These include a survey to capture demographic information and 
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driving experience and framing materials to provide extrinsic motivation and emotionally 
prime our users for their driving task to provide more depth to the data we collect during 
our more full-featured efforts. 
 
We were successful in meeting our targeted pool size of 50 participants. Aside from 
enlarging our sample size to provide more generalizable results, we also collected data 
from new modalities which we felt may help capture unique attributes of an individual’s 
driving behavior. Our research objective in doing so was to identify salient features 
which would improve upon the accuracy of the driver modeling, and therefore 
authentication, process. 
 
Our previous study was smaller in scope and collected a set of features which were 
designed to be minimally invasive. For our larger scale study, we decided to broaden 
our collection efforts to include measurements which were not directly connected to 
vehicle controls.  
 
Conclusions and Recommendations 
This project resulted in a novel approach to driver authentication based on users’ innate 
driving habits which are observable as vehicles are in operation. Two studies were 
performed, one with 10 human subjects and one with 50, in which they completed a 
simulated driving task while recording their activity. We successfully constructed models 
of driving activity via extracted features, namely pedal control, steering, speed, and 
distance traveled. The results of our experiment and modeling effort yield an average 
EER of 14.7%, implying a time-to-detection of 2 minutes and 20 seconds at 95% 
confidence with at most one false alert per day of driving. These results provide 
evidence in support of our hypothesis that drivers can be identified by observing the 
manner in which a vehicle is operated.  
 
Implementation and Training 
The results of this research have resulted in the following three publications: 

1. Security, Trust, and Privacy for Cloud Computing in Transportation Cyber- 
Physical Systems 
Wenjia Li, Jonathan Voris, and N. Sertac Artan. Data Security in Cloud Computing, 
The Institution of Engineering and Technology (IET), 2016. 

 
2. Driver Identification and Authentication with Active Behavior Modeling 
Angela Burton, Tapan Parikh, Shannon Mascarenhas, Jue Zhang, Jonathan Voris, 
N. Sertac Artan, and Wenjia Li. 1st International Workshop on Green ICT and Smart 
Networking (GISN) co-located with the 12th International Conference on Network 
and Service Management (CNSM), 2016. 
 
3. Utilizing Behind-the-Wheel Behavior for Driver Authentication 
Jonathan Voris, N. Sertac Artan, and Wenjia Li. Transportation Technology 
Symposium: Innovative Mobility Solutions, 2016. 
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